
Modeling morphological affixation with interpretable recurrent networks:

sequential rebinding controlled by hierarchical attention

Colin Wilson (colin.wilson@cogsci.jhu.edu)
Cognitive Science Department, Johns Hopkins University

Baltimore, MD 21218 USA

Abstract

This paper proposes a recurrent neural network model that
learns to perform morphological affixation, a fundamental op-
eration of linguistic cognition, and has interpretable relations
to descriptions of morphology at the computational and algo-
rithmic levels. The model represents morphological sequences
(stems and affixes) with distributed representations that sup-
port binding of symbols to ordinal positions and position-based
unbinding. Construction of an affixed form is controlled at the
implementation level by shifting attention between morphemes
and across positions within each morpheme. The model suc-
cessfully learns patterns of prefixation, suffixation, and infixa-
tion, unifying these at all levels of description around the theo-
retical notion of a pivot. Connections of the present proposal to
neural coding of ordinal position, and to computational models
of serial recall, are noted.

Keywords: morphology; distributed representations; recur-
rent networks; neural attention; multi-level descriptions

Introduction

Affixation operations play a central role in the inflectional

and derivational morphology of natural languages. In ele-

mentary cases of prefixation and suffixation, a fixed sequence

is concatenated to the beginning (e.g., unkind) or end (e.g.,

kindness) of a morphological stem. Circumfixation, in which

a single morpheme adds material to both edges of the stem

(e.g., German gesinge ‘singing’), can be analyzed as a combi-

nation of prefixation and suffixation. Infixation adds material

at a designated position in the stem that does not consistently

align with either the left or right edge. For example, some

infixes are placed immediately after the first stem consonant

(e.g., Mlabri prluut ‘carving’; Rischel, 1995), while others

appear immediately before the first vowel (e.g., Chamorro

trumisti ‘becomes sad’; Topping & Dungca, 1973).

As in many empirical domains that involve sequence data

(e.g., Bahdanau, Cho, & Bengio, 2015; Chorowski, Bah-

danau, Serdyuk, Cho, & Bengio, 2015; Graves & Schmidhu-

ber, 2009; Sutskever, Vinyals, & Le, 2014; Chiu et al., 2017),

deep recurrent networks currently outperform other models

on large-scale tasks of morphological learning and compu-

tation (e.g., Faruqui, Tsvetkov, Neubig, & Dyer, 2016; Cot-

terell et al., 2016; Cotterell, Vylomova, Khayrallah, Kirov,

& Yarowsky, 2017). However, the architecture and me-

chanics of these networks are currently disconnected from

rich, typologically-informed linguistic theories of morphol-

ogy (e.g., Spencer & Zwicky, 1998; Spencer, 1991) and from

a long tradition of symbolic approaches to computational

morphology (e.g., Sproat, 1992; Ritchie, Russell, Black, &

Pulman, 1992; Beesley & Karttunen, 2003). Despite contin-

uing efforts to visualize and interpret deep neural networks

(e.g., Karpathy, Johnson, & Li, 2015; Li, Chen, Hovy, &

Jurafsky, 2016; Liu, Mao, Sha, & Yuille, 2017), the way

in state-of-the-art models perform even simple concatenation

operations remains largely opaque.

This paper develops a recurrent network model of affixa-

tion that is fully interpretable, in the sense that each of its rep-

resentations (patterns of activity) and processes (operations

on activity patterns) has a clearly specified role in morpho-

logical computation. Several theoretical ideas, drawn from

across the cognitive sciences and from applied research on

neural networks, are integrated in the model. The most cru-

cial elements are a continuous implementation of symbolic

read/write operations and a control system that employs hier-

archical neural attention.

The following subsections introduce the model at the com-

putational and algorithmic levels (Marr, 1982). The body

of the paper then provides a description at the implemen-

tation level — discussing in detail how the representations

and processes of the implementation approximate those of

the affixation algorithm — and demonstrates that the model

is capable of learning affixation patterns, including infixa-

tion, from positive examples. While the model does not at-

tempt to match the achievements of previous deep networks,

its success in this restricted but important domain shows that

interdisciplinary, multi-level research on linguistic cognition

need not sacrifice interpretability to produce interesting per-

formance. Directions for further integrating the model with

what is known about neural coding of ordinal position, and

other types of serial behavior, are noted in the final section.

Computational level

Described at the most abstract level, each instance of the

present model computes an input-output function of the form:

stem→ stem[0,pivot]• affix• stem[pivot+ 1, ℓ− 1] (1)

where stem and affix are sequences of symbols from a fixed

alphabet Σ, concatenation is denoted by •, and ℓ = |stem| is

the number of symbols in the stem.

This schema unifies diverse affixation patterns around the

notion of a pivot (Yu, 2007), defined here as the position in

the stem immediately after which the affix is placed. In pre-

fixation, the pivot is consistently 0, the position occupied by

a special stem-initial symbol (⋊). In suffixation, the pivot is

always ℓ− 2, so that the affix is inserted immediately before

the stem-final symbol (⋉). Typological surveys of infixation

patterns (e.g., Ultan, 1975; Yu, 2007) support a parametric

theory of additional pivot positions: attested infixes are lo-

cated relative to the first or last instance in the stem of one of

a small set of linguistic units (e.g., consonant, vowel, syllable,

or stressed foot).

Regardless of the type of affixation operation that is in-

volved, the pivot can be found by a leftward or rightward

scan of the stem. For example, the pivot for the Chamorro

infix um can be located by iterating rightward from the be-

ginning of the stem and halting when the subsequent symbol

is a vowel (i.e., a member of the vowel natural class V ⊂ Σ).

Algorithmic level

The model has an algorithmic description in terms of three

unbounded arrays, or tapes, that are read from and written to

by a hierarchical control system (see Figure 1). The input to

the algorithm is a delimited sequence on the stem tape (e.g.,

⋊0k1i2n3d4⋉5). As part of its parameterization for a specific

affixation operation, the model has an internal sequence on

the affix tape (e.g., n0e1s2s3). It is convenient to treat these

two tapes as members of a list or array morphs= [stem,affix]
(line 1). A subroutine LOCATEPIVOT identifies the pivot in

the input stem (line 2) with a leftward or rightward scan as

mentioned above.

Four integer indices are manipulated by the controller.

The integer a indexes the morphemes in morphs (i.e.,

morphs[0] = stem and morphs[1] = affix). The integers

b0, b1, and c index ordinal positions on the stem, affix,

and output tapes, respectively. The morpheme-level index

a ∈ {0,1} can be used to select one of the two position-level

indices b0 or b1, as indicated by the notation ba.

The controller initializes all indices to the first position in

each sequence (line 3), then enters a loop in which symbols

are sequentially copied from morphs to output (lines 4-13).

In each pass through the loop, a single symbol y is read from

the stem or affix tape — according to the current values of

a, b0, b1 — and written to the current position of the output

tape (line 5). If a = 0, as initially, the symbol read out is

morphs[0][b0] (= stem[b0]); otherwise, a= 1 and the symbol

morphs[1][b1] (= affix[b1]) is read out. In either case, the

symbol is written to output[c].
The controller switches the morpheme-level index from

the value for the stem (= 0) to that of the affix (= 1) after

the symbol at the pivot position is copied (lines 6-7), and

switches it back to the stem value after copying the final sym-

bol of the affix (lines 9-10). At each step the position index

for the current morpheme is iterated (lines 8 and 11), as is the

position index for the output (line 12). The algorithm termi-

nates when the stem-final symbol ⋊ is written to the output

(line 13). Figure 1 shows the input/output mapping, with ex-

plicit index values, for the Chamorro example trumisti.

Implementation level

In the network implementation of the model, symbol se-

quences are realized by continuous embeddings and discrete

read/write operations are replaced by gradient counterparts.

The network has the status of an implementation because,

in clearly-specified limiting cases, its behavior is identical to

that of the algorithm (for outputs up to a maximum length).

The representations and update equations of the network also

stand in a close correspondence to those at the algorithmic

level, with a particularly tight relation holding for the repre-

sentations of morphological symbol sequences.

Continuous embedding of symbol sequences

Previous research on continuous models of cognitive repre-

sentation provide many potential embeddings of sequences

and other structured objects (Kanerva, 1988; Plate, 2003;

Botvinick & Watanabe, 2007; Cox, Kachergis, Recchia, &

Jones, 2011; Kelly, Mewhort, & West, 2014). Many of these

are exact or approximate instances of tensor-product repre-

sentations (TPRs) (Smolensky, 1990; Tesar & Smolensky,

2006). In a TPR, each symbol xi of the alphabet Σ is realized

by a vector xi. The symbol vectors can be localist (‘one-hot’),

random, or substantive encodings that express meaningful

similarity relations (e.g., shared phonological features). Here

we assume only that the symbol vectors are distinct, non-zero,

and of dimensionality m = |Σ|.
In addition to the vectors that realize atomic symbols,

TPRs employ vectors realizing the structural roles that sym-

bols occupy. A natural role set for symbol sequences is pro-

vided by the ordinal positions {0,1, . . . ,n− 1}, where n is

the maximum sequence length that the network can repre-

sent. Each position r j is realized by the vector r j — here we

assume only that these vectors are linearly independent, unit

length, and of dimensionality n.

The TPR embedding of a symbol sequence is constructed

by binding each symbol vector to its corresponding role vec-

tor with the tensor-product operator (⊗), and summing the

results. For example, the embedding of the stem kind, delim-

ited by start and end symbols, is S[⋊0k1i2n3d4⋉5] =

⋊⋊⋊⊗ r0 +k⊗ r1+ i⊗ r2+n⊗ r3+d⊗ r4+⋉⋉⋉⊗ r5

where xi⊗r j denotes the outer product xi rT
j . The embedding

of an affix such as un-, A[u0n1], is constructed in the same

way. Note that the embedding of every morpheme, regardless

of its length in symbols, is a matrix of fixed dimensionality

(namely, m× n).

The assumption that the position vectors are linearly in-

dependent is important, because it guarantees that a symbol

vector can be faithfully extracted from an embedding or un-

bound from its role (Smolensky, 1990). This is accomplished

by defining an unbinding vector u j for each role r j such that

r j · u j = 1 and rk · u j = 0 for all k 6= j. If the role vectors

are arranged into the columns of a matrix R, the unbinding

vectors are exactly the columns of U = (RT)−1. Then the

matrix-vector product Su j = SU[, j] returns the vector xi that

is bound to r j in S (or the zero vector 0m if there is no symbol

xi bound to r j in the sequence represented by S).

Binding atomic symbols to ordinal roles gives rise to

second-order tensors. Because the binding operation can be

applied recursively (Smolensky, 1990), expressions such as:

M = S[⋊0k1i2n3d4⋉5]⊗ r0 +A[u0n1]⊗ r1

are well-defined third-order tensors in which the embeddings

of a stem and an affix are bound to positions 0 and 1, respec-

AFFIXATION(stem)

1 morphs← [stem,affix]
2 pivot← LOCATEPIVOT(stem)
3 a← b0← b1← c← 0

4 repeat

5 y← output[c]←morphs[a][ba]
6 if a = 0 then

7 a← a+ 1 if b0 = pivot

8 b0← b0 + 1

9 else

10 a← a− 1 if b1 = (|affix|− 1)
11 b1← b1 + 1

12 c← c+ 1

13 until y =⋉

morphs

affix1

u0 m1

stem0

⋊0 t1 r2 i3 s4 t5 i6 ⋉7

→

output

⋊0 t1 r2 u3 m4 i5 s6 t7 i8 ⋉9

Figure 1: Algorithmic description of the affixation model (left) and example of Chamorro infixation (right).

tively. In the same way that Su j extracts the vector realizing

the jth symbol (if any) in a morpheme, a suitably defined un-

binding vector uk can be used to extract the matrix realizing

the kth morpheme (i.e., Muk).

Attention-based indexation

The discussion so far has presupposed that integer indices are

available to the model (e.g., to select the jth column of the

role matrix R for the purpose of binding a symbol vector to

it, or to select the kth column of the matrix U for the purpose

of unbinding a symbol vector). However, in order to ensure

that the input/output function is differentiable, the implemen-

tation instead uses real-valued indices. Therefore, exact col-

umn selections such as R[, j] and U[,k] — and the binding

and unbinding operations they support — must be replaced

by approximate alternatives. This can be accomplished with

neural attention, a type of soft indexation that has been been

successfully applied in a wide variety of deep network mod-

els (e.g., Graves, Wayne, & Danihelka, 2014; Luong, Pham,

& Manning, 2015; Faruqui et al., 2016; Graves et al., 2016).

The essential idea is that exact extraction of the jth col-

umn of a matrix Xm×n can be performed with Xe j, where e j

is the canonical basis vector with 1 in the jth position and 0

elsewhere. Notice that e j satisfies the properties 0 ≤ e jk ≤ 1

(for 0 ≤ k < n) and ∑n
k=1 e jk = 1; thus e j can be interpreted

as a maximally-peaked distribution of attention over the n

columns of X. In the soft approximation to column ex-

traction, real-valued indices are mapped to generic attention

distributions — distributions that spread attention out more

broadly, becoming maximally peaked only in the limit —

over the ordinal positions {0,1, . . . ,n− 1}.

Specifically, let rbfn denote a layer of classical radial basis

units (Broomhead & Lowe, 1988; Moody & Darken, 1989),

with one unit centered at each ordinal position µ from 0 to

n− 1. A real-valued input b is passed through the layer and

the activities of the units are normalized to yield an attention

distribution β = norm-rbfn(b). For Gaussian units, the map-

ping from a real-valued index to an attention distribution is

defined by:

sµ =−τ(b− µ)2 for µ ∈ {0,1, . . . ,n− 1} (2)

β = softmax(s)

where τ > 0 is a precision parameter that determines the

selectivity of each unit in the layer and softmax(s)µ =
exp(sµ)/∑µ′ exp(sµ′). In the limit τ→ ∞, the vector returned

by (2) places all of its attention on the ordinal position that

has the smallest squared distance to b. Otherwise, attention

is distributed across multiple positions in a way that favors

those closer to the input. If b is closest to integer index j

(0≤ j < n), then r̃ j = Rβ will be approximately equal to the

jth role vector (i.e., r j = R[, j]). Similarly, the jth unbinding

vector u j = U[, j] is approximated by ũ j = Uβ.

Sequential rebinding

The preceding development is sufficient to understand how

the model’s implementation can, approximately, unbind the

vector realizing a symbol in a particular position of the stem

or affix and then bind the vector to a (possibly different) posi-

tion in the output. Let M be the third-order tensor defined pre-

viously (i.e., M = [S0,A1], where matrices S and A realize a

stem and affix, respectively), and let Y be a second-order ten-

sor realizing the output of the affixation operation (initially,

Y = 0m×n). Further let the morpheme index a and the posi-

tion indices b0, b1, c be as defined in the algorithmic level

description of the model, except that each is now real-valued.

The distribution ααα = norm-rbf2(a) divides attention be-

tween the two morphemes realized within M, while the dis-

tributions βββ0 = norm-rbfn(b0), βββ1 = norm-rbfn(b1), and

ωωω = norm-rbfn(c) allocate attention to ordinal positions in

the stem, affix, and output sequences realized by S, A, and

Y, respectively. The following equations then define the soft

rebinding operation that approximately implements copying

from a morpheme to the output:

ũ0 = Uβββ0 (3)

ũ1 = Uβββ1

r̃ = Rωωω

x̃0 = M0 ũ0 (= M0 Uβββ0 = SUβββ0)

x̃1 = M1 ũ1 (= M1 Uβββ1 = AUβββ1)

ỹ = α0 x̃0 +α1 x̃1

Y = Y+ ỹ⊗ r̃

The first three equations retrieve soft unbinding and bind-

ing vectors with attention distributions over ordinal positions.

The two unbinding vectors are then used, again approxi-

mately, to unbind a symbol vector from each of the morpheme

embeddings.1 The convex combination of these vectors, with

weights determined by the attention distribution over mor-

phemes, determines the vector ỹ that is ‘read’. Finally, this

vector is ‘written’ to the output by binding it to the soft role r̃

and accumulating the result into the output embedding Y.

When all three attention distributions are sharply peaked,

soft rebinding closes approximates the algorithmic read/write

operations of line 5 in Figure 1. Otherwise, the vector that is

unbound will be a blend of the realizations of possibly mul-

tiple symbols from both morphemes, and binding to the soft

role vector will spread it over multiple ordinal positions. As

noted above, the degree of discretization is controlled by the

precision parameters of the radial basis pools rbf2 and rbfn.

Hierarchical neural control

In the algorithm of Figure 1, lines 6-12 specify the control

structure that updates integer indices over the course of pro-

cessing. The implementation replaces discrete increments

and decrements with continuous changes of the real-valued

indices, as specified by the following series of equations:

s0 = p ·βββ0 (4)

s1 = CHECKEND(A,b1)

a = a+α0 s0−α1 s1

b0 = b0 +α0

b1 = b1 +α1

c = c+ 1

where in the first equation p = LOCATEPIVOT(S) assigns a

pivot probability to each position in the stem, and in the sec-

ond equation CHECKEND determines the probability that b1

is near the end of the affix.2

1If the matrix R of role vectors is the identity matrix In×n, then so
is the unbinding matrix U. Under this localist encoding of position,
SUβββ0 and AUβββ1 simplify to Sβββ0 and Aβββ1. The equations in the
text generalize to linearly-independent distributed role vectors.

2LOCATEPIVOT and CHECKEND were implemented with sim-
ple LSTM subnetworks (e.g., Hochreiter & Schmidhuber, 1997), the
former scanning the stem bidirectionally and the latter scanning left-
ward only. For example, CHECKEND(A,b1) maps the soft position
after b1, namely (b1+1), to an attention distribution over unbinding

The morpheme index a is incremented by about one unit if

attention is currently focused on the stem (α0 ≈ 1) and b0 is

close to the pivot point (s0 ≈ 1) — thereby softly switching

attention onto the affix. It is decremented by about one unit

when attention is currently directed to the affix (α1 ≈ 1) and

b1 is close to the end of the affix (b1 ≈ 1) — softly switching

back to the stem. Intermediate changes are possible and re-

sult in attention being more evenly divided between the two

morphemes. The stem position index b0 is incremented to

the extent that attention is currently focused on the stem, and

similarly for the affix position index b1. In the one residual

discrete component of the model, the output index c always

advances in unit increments.

The equations in (3) and (4) together describe a recurrent

network that, at each time step, first modifies the output Y

according to the current values of the indices (and the matri-

ces S and A) and then updates the indices. The indices are

initialized as in the algorithm, with a = b0 = b1 = c = 0. The

condition for halting the recurrence can be implemented in

two ways: by checking for similarity between the current y

and the vector realizing the stem-end symbol ⋉ after each

update, as in the algorithmic description; or by allowing the

recurrence to always proceed for n time steps, continuing to

‘read’ and ‘write’ vectors close to 0m after the symbols in the

stem and affix have been exhausted.

Simulation results

Each instantiation of the model implements a single affixa-

tion operation, learned from positive examples of the form

〈stem,output〉. The model was not explicitly told what type

of operation the examples illustrate (i.e., prefixation, suffixa-

tion, or infixation), and the input contained no marking of the

boundaries between stems and affixes. Therefore, the model

had to learn both the form of the affix and the function that

determines the pivot point in any given stem. The learned

parameters of the model were the m× n tensor-product rep-

resentation of the affix, the precisions of the two radial-

basis pools, and the parameters of the LSTMs implementing

LOCATEPIVOT and CHECKEND. (The parameterization of

CHECKEND could in principle be hard-coded but was learned

in the present simulations.)

For each input stem, the model generated a soft TPR as

output. This matrix was interpreted probabilistically by iter-

ating through the discrete position roles and transforming the

gradient symbol vector that is bound to role ri into a probabil-

ity distribution over symbols in the ith position.3 The model

vectors, as described in the text, and then approximately extracts a
symbol vector from the affix matrix A. The first such vector that
is sufficiently similar to 0m signals the end of the affix. This ap-
proximates the algorithm of scanning an end-padded affix such as
nessεε · · · to identify the position immediately before the first ε.

3This was done by computing the Euclidean distance between
the unbound vector and each symbol vector, then normalizing. Sym-
bol and role vectors were random subject to the requirements speci-
fied earlier in the text. Precision parameters were initialized to 1 and
other parameters were randomly initialized to small values. Simula-
tions were performed in PyTorch (Paszke et al., 2017) with the Ada-
grad gradient-based optimizer and an initial learning rate of 0.05.

attempted to minimize the negative log-likelihood of the cor-

rect output symbol at each position, and learning halted when

this objective (summed across positions and averaged over

members of a minibatch) fell below 0.01 or 5000 epochs were

completed, whichever came first. At test, a single predicted

symbol sequence was generated from each output by unbind-

ing the most probable filler for each role until ⋉ was emitted.

The first simulation was performed on 1270 adjective

stems and their nominal forms derived with the highly pro-

ductive suffix -ness (e.g., 〈kind,kindness〉), as extracted from

CELEX (Baayen, Piepenbrock, & Gulikers, 1995). The

dataset was randomly divided into two halves (train vs. test),

and in each epoch a minibatch of 40 examples was drawn

at random from the training half. The entire training/testing

procedure was repeated ten times. In nine of the replications,

the model performed perfectly (100% accuracy) on all of the

data; in the tenth, the model achieved 96% correct on the

training forms and 95% on the held-out testing forms.

The second simulation used 338 adjective stems and their

un- prefixed forms (e.g., 〈kind,unkind〉), again taken from

CELEX. The same split-half procedure with multiple replica-

tions was performed. The model performed perfectly on both

halves of the data in all replications. In these and the previous

simulations, the objective typically fell below the threshold in

fewer than 500 epochs and accuracy on the training examples

asymptoted even faster. The model thus learns simple prefix-

ation and suffixation patterns from relatively little evidence,

and generalizes systematically beyond its training data.

For the third simulation, 124 examples of Chamorro -

um- infixation were gathered from a dictionary (Topping &

Dungca, 1973) and other sources. Following the same train-

ing and testing procedure, the model performed perfectly on

both halves of the data in seven out of ten replications. For

the remaining three replications it had perfect performance

on the training data but 97% accuracy on the held-out data.

When the model produced erroneous output sequences, these

were one symbol away from the correct outputs. While the

present results are encouraging, future work should investi-

gate whether a larger training corpus or changes to the learn-

ing regimen can raise the model’s performance for infixation

patterns to the same level as for prefixation and suffixation.

Conclusion and future directions

Previous studies of the structure and learning of morphology

have focused almost exclusively on a single level of descrip-

tion: the computational level adopted in generative linguis-

tics, the algorithmic level of finite-state models, or the imple-

mentation level of classic and modern neural networks. The

recurrent model of morphological affixation developed in this

paper has a consistent interpretation at all three levels, and

combines insights from many different perspectives. The ele-

mentary step of morphological affixation, as understood here,

involves copying a symbol from one sequence to another (i.e.,

rebinding; cf. Gu, Lu, Li, & Li, 2016). This operation, triv-

ial to characterize at the computational and algorithmic lev-

els, requires neural attention or a similar mechanism when

implemented with continuous indices. The notion of pivot,

drawn from restrictive theories of linguistic cognition, indi-

cates when copying should switch from one morpheme to

another. The switching process can itself be modeled as a

reallocation of attention over morphemes.

At the implementation level, the model uses unit types

that are familiar from artificial and biological neural net-

works, and processing interactions among units that may be

canonical in brain-based computation (Carandini & Heeger,

2012). Real-valued indices are mapped to attention distri-

butions with units that are tuned to ordinal positions and in-

teract by divisive normalization. Neurons with ordinal pref-

erences have been identified in single-cell recording stud-

ies (e.g., Nieder & Miller, 2004; Jacob & Nieder, 2008);

however, these biological neurons do not appear to have the

symmetric and equal-precision receptive fields assumed here,

suggesting a direction for further research at the implemen-

tation level. These neurons have been invoked to account for

serial recall performance (e.g., Botvinick & Watanabe, 2007)

and sequential linguistic behavior (e.g., Dehaene, Meyniel,

Wacongne, Wang, & Pallier, 2015). The connection between

serial recall and morphology is relatively unexplored but clear

from the present analysis: construction of an affixed form

can be understand as grammatically-regulated recall of two

simultaneously active symbol sequences.

Acknowledgments

Discussions related to this research with Marina Bedny, Paul

Smolensky, and members of the gradient symbolic computa-

tion research group are gratefully acknowledged, as are the

comments of four anonymous reviewers and support from

NSF INSPIRE grant BCS-1344269.

References

Baayen, R. H., Piepenbrock, R., & Gulikers, L. (1995).

The CELEX lexical database (Release 2): Linguistic Data

Consortium. University of Pennsylvania, Philadelphia, PA,

USA.

Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural ma-

chine translation by jointly learning to align and translate.

In Proceedings of ICLR, arxiv preprint arxiv:1409.0473.

Beesley, K. R., & Karttunen, L. (2003). Finite-state morphol-

ogy: Xerox tools and techniques. Stanford, CA: CSLI.

Botvinick, M., & Watanabe, T. (2007). From numerosity to

ordinal rank: a gain-field model of serial order representa-

tion in cortical working memory. Journal of Neuroscience,

27(32), 8636–8642.

Broomhead, D. S., & Lowe, D. (1988). Multivariable func-

tion interpolation and adaptive networks. Complex Sys-

tems, 2, 321–355.

Carandini, M., & Heeger, D. J. (2012). Normalization as

a canonical neural computation. Nature Reviews Neuro-

science, 13(1), 51–62.

Chiu, C.-C., Sainath, T. N., Wu, Y., Prabhavalkar, R.,

Nguyen, P., Chen, Z., . . . Bacchiani, M. (2017). State-

of-the-art speech recognition with sequence-to-sequence

models. arXiv preprint arXiv:1712.01769.

Chorowski, J., Bahdanau, D., Serdyuk, D., Cho, K., & Ben-

gio, Y. (2015). Attention-based models for speech recog-

nition. In Advances in Neural Information Processing Sys-

tems 28 (pp. 577–585).

Cotterell, R., Kirov, C., Sylak-Glassman, J., Yarowsky, D.,

Eisner, J., & Hulden, M. (2016). The SIGMORPHON 2016

shared task — morphological reinflection. In Proceedings

of the 14th SIGMORPHON Workshop (pp. 10–22).

Cotterell, R., Vylomova, E., Khayrallah, H., Kirov, C., &

Yarowsky, D. (2017). Paradigm completion for derivational

morphology. In Proceedings of EMNLP (pp. 714–720).

Cox, G. E., Kachergis, G., Recchia, G., & Jones, M. N.

(2011). Toward a scalable holographic word-form repre-

sentation. Behavior Research Methods, 43(3), 602–615.

Dehaene, S., Meyniel, F., Wacongne, C., Wang, L., & Pallier,

C. (2015). The neural representation of sequences: from

transition probabilities to algebraic patterns and linguistic

trees. Neuron, 88(1), 2–19.

Faruqui, M., Tsvetkov, Y., Neubig, G., & Dyer, C.

(2016). Morphological inflection generation using char-

acter sequence to sequence learning. In Proceedings of

NAACL:HLT (pp. 634–643).

Graves, A., & Schmidhuber, J. (2009). Offline handwrit-

ing recognition with multidimensional recurrent neural net-

works. In Advances in Neural Information Processing Sys-

tems 22 (pp. 545–552).

Graves, A., Wayne, G., & Danihelka, I. (2014). Neural Tur-

ing machines. arXiv preprint arXiv:1410.5401.

Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka,

I., Grabska-Barwińska, A., . . . others (2016). Hybrid com-

puting using a neural network with dynamic external mem-

ory. Nature, 538(7626), 471–476.

Gu, J., Lu, Z., Li, H., & Li, V. O. K. (2016). Incorporating

copying mechanism in sequence-to-sequence learning. In

Proceedings of ACL (p. 1631-1640).

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term

memory. Neural Computation, 9(8), 1735–1780.

Jacob, S. N., & Nieder, A. (2008). The ABC of cardinal

and ordinal number representations. Trends in Cognitive

Sciences, 12(2), 41–43.

Kanerva, P. (1988). Sparse distributed memory. Cambridge,

MA: MIT press.

Karpathy, A., Johnson, J., & Li, F. (2015). Visualizing and

understanding recurrent networks. In Proceedings of ICLR,

arxiv preprint arxiv:1506.02078.

Kelly, M. A., Mewhort, D. J. K., & West, R. L. (2014). The

memory tesseract: Distributed MINERVA and the unifica-

tion of memory. In Proceedings of the 36th Annual Meeting

of the Cognitive Science Society (pp. 2483–2488).

Li, J., Chen, X., Hovy, E. H., & Jurafsky, D. (2016). Visu-

alizing and understanding neural models in NLP. In Pro-

ceedings of NAACL:HLT (pp. 681–691).

Liu, C., Mao, J., Sha, F., & Yuille, A. L. (2017). Attention

correctness in neural image captioning. In Proceedings of

the Thirty-First AAAI Conference on Artificial Intelligence

(pp. 4176–4182).

Luong, T., Pham, H., & Manning, C. D. (2015). Effective

approaches to attention-based neural machine translation.

In Proceedings of EMNLP (pp. 1412–1421).

Marr, D. (1982). Vision: A computational investigation into

the human representation and processing of visual infor-

mation. Cambridge, MA: MIT Press.

Moody, J., & Darken, C. J. (1989). Fast learning in net-

works of locally-tuned processing units. Neural Computa-

tion, 1(2), 281–294.

Nieder, A., & Miller, E. K. (2004). A parieto-frontal network

for visual numerical information in the monkey. Proceed-

ings of the National Academy of Sciences, 101(19), 7457–

7462.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., De-

Vito, Z., . . . Lerer, A. (2017). Automatic differentiation in

PyTorch. In Proceedings of NIPS 2017 Autodiff Workshop.

Plate, T. A. (2003). Holographic reduced representation:

Distributed representation for cognitive structures. Stan-

ford, CA: CSLI Publications.

Rischel, J. (1995). Minor Mlabri: A hunter-gatherer lan-

guage of Northern Indochina. Njalsgade: Museum Tuscu-

lanum Press.

Ritchie, G. D., Russell, G. J., Black, A. W., & Pulman, S. G.

(1992). Computational morphology. Cambridge, MA: MIT

Press.

Smolensky, P. (1990). Tensor product variable binding and

the representation of symbolic structures in connectionist

systems. Artificial Intelligence, 46(1-2), 159–216.

Spencer, A. (1991). Morphological theory: An introduction

to word structure in generative grammar. Cambridge, MA:

Basil Blackwell.

Spencer, A., & Zwicky, A. M. (1998). The handbook of

morphology. Oxford: Blackwell.

Sproat, R. W. (1992). Morphology and computation. Cam-

bride, MA: MIT press.

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence

to sequence learning with neural networks. In Advances

in Neural Information Processing Systems 27 (pp. 3104–

3112).

Tesar, B., & Smolensky, P. (2006). Symbol computation with

activation patterns. In The Harmonic Mind: From neural

computation to Optimality-theoretic grammar (Vol. 1, pp.

235–270). Cambridge, MA: MIT Press.

Topping, D. M., & Dungca, B. C. (1973). Chamorro refer-

ence grammar. Honolulu: University of Hawaii Press.

Ultan, R. (1975). Infixes and their origins. In H. Seider (Ed.),

Linguistic Workshop III (pp. 156–205). Munich: Wilhelm

Fink.

Yu, A. C. L. (2007). A natural history of infixation. Oxford:

Oxford University Press.

