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1. Introduction1

It is well known that listeners adapt, in some sense, to speech that they have recently heard. Words 

spoken in recently heard voices or accents are recognized more quickly and accurately (Mullennix et 

al. 1989; Goldinger 1996; Nygaard & Pisoni 1998; Maye et al. 2003; Kraljic and Samuel 2006, 2007; 

Smith 2007; see Nygaard 2008 for a review). And listeners can become attuned to novel phonetic 

characteristics of particular speech sounds (Norris et al. 2003), classes of sounds (Maye et al. 2008, 

Morley 2008), and even individual words (Dahan & Scarborough 2005).

Research on speech production over the past decade has discovered a counterpart to perceptual 

adaptation. Talkers implicitly imitate the phonetic properties of speech presented in the form of 

experimental stimuli (Goldinder 1998, Shockley et al. 2004, Nielsen 2007) and of the speech produced 

by their interlocutors (Pardo 2006, Delvaux & Soquet 2007). The phonetic imitation effect, and its 

theoretical analysis in terms of a model of phonetic knowledge and learning, is the focus of our paper.

We begin by discussing a phonetic imitation experiment that replicates and extends the results of 

previous work. Participants in the experiment were exposed to speech in which the voice-onset time 

(VOT) of one word-initial voiceless stop (namely, [p
h
]) had been digitally lengthened. When the 

participants later produced the same words that they had heard as stimuli, and different words 

beginning with [p
h
] that had not heard, their VOTs were longer in comparison to a pre-listening 

baseline condition. Importantly, the participants also lengthened VOT when producing words that 

begin with a different voiceless stop, namely [k
h
]. This novel result provides evidence against models 

of speech perception and production that have no representations other than individual sounds or 

individual words. If such models were correct, participants in this experiment would have had to 

somehow ‘imitate’ phonetic manipulations that they had not experienced. 

We analyze phonetic imitation in general, and the extension of imitation from [p
h
] to [k

h
] in 

particular, with a model that has multiple levels of linguistic representation and a statistically sound 

mechanism of adapting to experience. For the purposes of this paper, we take the set of levels to 

include at least word and feature (or gesture) representations. It is the existence of featural/gestural 

representations that supports generalization across segments: [p
h
] and [k

h
] share a feature, such as [–

voice] or [+spread glottis] ([+s.g.]), that is phonetically interpreted in terms of VOT (among other 

phonetic properties; Liberman et al. 1958; Lisker & Abramson 1964); informally, then, we expect a 

manipulation of the VOT of some [p
h
]-initial words to be extended to [k

h
]-initial words — that is, to 

lead to phonetic imitation at the level of the feature — as well as to other [p
h
]-initial words. Because 

the level of phonetic imitation is somewhat greater for words that were actually heard with lengthened 

VOT (see also Goldinger 1998), we characterize the overall pattern as multi-level phonetic imitation. 

All else being equal, we expect that all levels of linguistic representation are engaged in phonetic 

imitation, and therefore that the size of the imitation effect for a particular word will roughly correlate 

with its similarity, as defined by the model, to words that have been recently heard.
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  Formalizing our intuitive understanding of phonetic imitation requires a model in which statistical 

distributions are updated based on perceptual experience, and then applied generatively to yield 

predictions about performance. The cornerstone of our model is Bayes’ Theorem, which is a rational 

means of estimating distributions from multiple sources of evidence and prior knowledge (MacKay 

2003; Chater et al. 2006). The model is structured hierarchically: the phonetic distributions of 

individual speakers (or perhaps episodes) are nested within a population distribution; the population is 

itself nested within a universal ‘superpopulation’ that embodies language learners’ a-priori knowledge 

of phonetic distributions. This Bayesian hierarchy, which runs orthogonal to the levels of 

representation discussed above, allows the model to account for listeners’ knowledge of and adaptation 

to specific speakers (Mullennix et al. 1989, Nygaard and Pisoni 1998, Smith 2007) and, crucially, 

provides a principled mechanism for generalizing from partial experience of a new speaker. When 

exposed to the same experimental stimuli, the model predicts generalization of VOT lengthening at the 

feature- and word- level like that observed in human participants. 

 The rest of this paper is organized as follows. Section 2 describes the phonetic imitation 

experiment outlined above in somewhat more detail.
2
 Section 3 develops and applies the hierarchical 

Bayesian model of multi-level phonetic imitation. Because the model is a straightforward application 

of standard techniques in Bayesian analysis (Gelman et al. 2004, Gelman and Hill 2007; Bishop 2006), 

we focus on the aspects of the model that are specific to our proposal: multiple levels of linguistic 

representation, and hierarchical arrangement of speakers within the population and the population 

within the superpopulation. In Section 4, we conclude the paper with a summary of the model and a 

brief discussion of directions for improving and expanding our proposal. 

 

2. Multiple levels of representation and phonetic imitation 
 

 The experiment reported in this section was motivated by two main goals. The first was to 

replicate the phonetic imitation effect with a paradigm that does not involve shadowing or immediate 

repetition (see also Goldinger 2000; cf. Goldinger 1998, Shockley et al. 2004). The second, more 

important goal was to test for multi-level imitation. To this end, we compare the degree of imitation in 

words that had been heard with lengthened VOT (heard words), all of which were [p
h
]-initial, to the 

degree of imitation in words that had not been presented as auditory stimuli (unheard words). The set 

of unheard words included both [p
h
]-initial and [k

h
]-initial items. If imitation were restricted to word-

level representations, then only the heard words should be affected by the experimental manipulation. 

On the other hand, if (at least) word-level and feature-level representations contribute to phonetic 

imitation, then we would expect all of the words to exhibit the effect, with the possibility that the 

degree of imitation would be greater for the heard [p
h
]-initial words than for the unheard [p

h
]-initial 

words, and for [p
h
]-initial words than for [k

h
]-initial words in general. 

 

2.1. Method 
 

 Participants. Twenty-seven monolingual native speakers of English, recruited from the UCLA 

undergraduate population, participated in the experiment for course credit. All participants reported 

normal hearing. 

 Materials and design. 120 real English words were used as materials in the experiment: 100 [p
h
]-

initial words and 20 [k
h
]-initial words. All of the words had initial stress, and the initial consonant was 

prevocalic in all cases. 80 of the [p
h
]-initial words, 40 low frequency and 40 high frequency, were 

selected for inclusion in a listening phase.
3
 These are referred to as the heard items. The remaining 20 

                                                
2
 This and other experiments are presented more fully in Nielsen (2008). See also Nielsen (2005, 2006) for earlier 

presentations of some of the same material. 
3
 The thresholds for low- and high- frequency items in the experiment were < 5 and > 50, respectively, in the 

Brown corpus (Ku era and Francis 1967) and < 300 and > 1000 in CELEX2 (Baayen et al. 1995). Phonological 

neighborhood densities were calculated on-line with the St. Louis Speech and Hearing Lab Neighborhood 

Database (http://neighborhoodsearch.wustl.edu/Neighborhood/NeighborHome.asp), and word familiarity was 

assessed with the 7-point Hoosier Mental Lexicon scale (Nusbaum et al. 1984). 
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[p
h
]-initial words and all 20 [k

h
]-initial words were low frequency; they are referred to as the unheard 

items. Neighborhood density, familiarity, and word-length were also controlled across the stimulus set. 

(The complete stimulus set also included sonorant-initial filler words; see Nielsen 2008.) 

 The 80 heard items were recorded by a phonetically-trained male speaker of American English. 

The speaker was asked to produce the words first normally, and then with extra aspiration. Aspiration 

from the latter productions were digitally spliced into the former, approximately 10 to 20ms before the 

onset of voicing of the following vowel, in order to lengthen the VOT of the initial consonant by 40ms. 

If initial splicing resulted in a VOT of less than a predetermined threshold (100ms), further 

lengthening was performed until the threshold was reached. The resulting tokens had a mean VOT of 

113ms, sd = 10.82. (By comparison, the unedited normal productions had a mean VOT of 72ms, sd = 

12.14). The approximately 40ms of additional VOT in the edited recordings was expected to induce 

imitative VOT lengthening in the participants’ productions. 

 The procedure for each experimental participant was a modified version of the word-naming 

imitation paradigm (Goldinger 2000). First, each of the 120 stimulus words was presented on a 

computer screen, and the participant was asked to read each one silently. Second, the same word list 

was presented visually again and the participant was asked to read each word aloud. These baseline 

productions were recorded, and the word-initial stop VOTs were measured by the first author and a 

phonetically-trained research assistant. Third, the participant was instructed to listen carefully to two 

repetitions of the VOT-lengthened versions of the 80 [p
h
]-initial heard items. This listening phase of 

the experiment did not involve any visual stimulus or other task. Fourth and finally, the participants 

again read aloud the 120 stimulus items as they were presented on the computer screen. These test 

productions were elicited and analyzed in exactly the same way as the baseline productions. The 

statistical analysis reported below compares the baseline and test productions for each participant. 

 

2.2. Results and discussion 
 

 The table in (1) gives the mean VOTs across participants in the baseline and test productions for 

each type of stimulus.  

 

(1) VOT means (and standard errors) in the baseline and test productions 

Heard baseline test Unheard baseline test 

[p
h
] Low freq. 

(40 items) 

65.73 

(2.98) 

73.41 

(3.18) 

[p
h
] Low freq. 

(20 items) 

63.73 

(2.88) 

70.27 

(2.64) 

[p
h
] High freq. 

(40 items) 

65.76 

(3.05) 

72.09 

(3.18) 

[k
h
] Low freq. 

(20 items) 

75.87 

(2.69) 

80.66 

(2.52) 

 

The table shows small but consistent phonetic imitation effect (difference between test and baseline 

VOTs) of approximately +5 to +7ms across the stimulus categories. A two-tailed paired t-test 

comparing baseline and test productions reveals that the effect is significant (t(26) = 16.53, p < .01). In 

contrast, a comparison of whole-word durations of the baseline and test productions for a randomly 

selected group of participants (N=8) showed no significant difference (t(7) < 1); note that this 

subgroup did show the imitation effect that was observed in the entire set of participants (t(7) = 4.67, p 

< .01). The absence of a change in whole-word duration, in combination with a significant change in 

VOT, suggests that the phonetic imitation was keyed to the particular phonetic manipulation in the 

auditory stimuli, rather than being a more global modification of speech style or rate.  

 Repeated measures ANOVAs with production type (baseline vs. test) crossed with other factors 

(gender: male vs. female, segment: [p
h
] vs. [k

h
], and frequency: high vs. low) showed no significant 

interactions.
4
 The lack of an interaction with segment, despite the fact that only [p

h
]-initial words were 

                                                
4
 As expected from previous research, there were main effects of the between-participant factor of gender (F(1,1) 

= 12.60, p < .01) and the within-participant factor of segment (F(1,25) = 271.15, p < .01). It has been reported that 

females tend to have longer VOT values for aspirated stop consonants than males (Swartz 1992; Whiteside et al. 

2004), though this difference may be at least partially due to independent differences in rate of speech (Allen et al. 

2004). As for the main effect of segment, it is well known that aspirated velar stops such as [k
h
] tend to have 
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heard with elevated VOTs, supports the hypothesis that phonetic imitation engages a level of 

representation lower than that of individual sounds and is consistent with previous findings by Kraljic 

and Samuel (2006) on perceptual adaptation. This finding motivates the existence of feature-level 

representations, and is consistent with the non-existence of segment-level representations, in the model 

presented in section 3. 

 We were surprised at the lack of an interaction with lexical frequency, given Goldinger’s (1998, 

2000) findings of word specificity in phonetic imitation, and therefore examined this issue further. It is 

possible that word-level representations contribute to phonetic imitation, but that this contribution is 

smaller or less consistent across speakers than the contributions of lower representational levels. To 

explore this issue, we identified a subgroup of participants (N=15) whose test VOTs were at least 5% 

greater than their baseline VOTs and tested for an interaction between production type and lexical 

frequency in this subgroup. A repeated measures ANOVA with production type and frequency as 

within-participant factors showed significant main effects of both factors (production type: F(1,13) = 

16.20, p < .01; frequency: F(1,13) = 7.58, p < .05) as well as a significant interaction (F(1,13) = 5.78, p 

< .05). Within this subgroup, low frequency lexical items exhibit a larger phonetic imitation effect 

(approximately +14ms) than high frequency items (approximately +10ms). (The interaction between 

production type and segment remained non-significant in this subgroup.) 

 To summarize, the results of this experiment support the claim that phonetic imitation is not 

restricted to words, or even segments, that have been experienced with a particular phonetic property. 

Imitation was generalized to unheard words, including those beginning with a segment ([k
h
]) that had 

never occurred initially in the listening phase of the experiment but which is identical on the relevant 

feature to the segment that had been heard with exaggerated VOT ([p
h
]). The results are also 

compatible with the claim that phonetic imitation is stronger for lower-frequency words than for 

higher-frequency words, though the contribution of word-level representations to the effect appears to 

be weak or inconsistent across speakers for reasons that we do not fully understand. The formal model 

developed in the next section aims to account for the multi-level structure of these findings. 

 

3. Hierarchical Bayesian modeling 
 

 The starting point for our model of phonetic imitation is the hypothesis that adaptation in 

perception and imitation in production reflect a common underlying learning mechanism: namely, the 

ability to estimate the values of speaker-specific phonetic parameters. The set of parameters, 

constraints on their values, and their method of interaction determine the space of possible phonetic 

distributions that a listener can represent and learn. For example, if the parameters made no reference 

to individual lexical items, or to lexical properties such as frequency, then adaptation and imitation 

modulated by purely lexical factors would be impossible. Contrariwise, inclusion of parameters that 

are sensitive to a particular level of representation makes that level a possible locus of adaptation and 

imitation. We develop our model in the next three subsections, beginning with assumptions about the 

representational space, then turning to issues of statistical learning, and finally describing how the 

model can be used to generate predictions about phonetic imitation and comparing the predictions to 

the experimental results reported in section 2. 

 

3.1. Parametric model of speakers and the speech population 
 

 We assume that a listener’s internal phonetic model of a speaker s(i) takes the form of a statistical 

generative grammar g(i) of s(i)’s speech. Focusing on the parameters that are of relevance for 

modeling adaptation to and imitation of VOT in initial voiceless stops, we specifically assume that g(i) 

includes one parameter sg(i) that represents the basic VOT (i.e., the basic expression of [+spread 

glottis]) for initial voiceless stops produced by this speaker, one parameter dor(i) that represents the 

(positive) deviation from the basic VOT for the dorsal segment [k
h
], and a set of parameters {w(i,j)} 

                                                                                                                                      
longer VOTs than aspirated labial stops such as [p

h
], both cross-linguistically (Cho & Ladefoged 1999) and in 

English in particular (Lisker and Abramson 1964; Zue 1980). There was no main effect of the within-participant 

factor of lexical frequency (F(1,25) = 2.19, p > .01); see the text for further discussion of this factor. 
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representing the (positive or negative) deviations in VOT that are attributed to individual lexical items, 

where j is an index over words. We have found this set of parameters to be sufficient for modeling our 

experimental results, but do not claim that it is necessary; for example, the item-specific parameters 

could potentially be replaced by parameters that are sensitive to phonetic or phonological properties 

(e.g., the following vowel; see Port and Rotunno 1979) or to lexical properties other than lexical 

identity (e.g., lexical frequency or neighborhood density; see Wright 2004; Scarborough 2003, 2004; 

Munson and Solomon 2004; Baese-Berk and Goldrick, in press). The formal system presented below 

could also readily accommodate parameters that are sensitive to gender and other variables of 

sociolinguistic relevance, as well as effects of speech rate and style. 

 We assume that listeners model the speaker-specific, word-initial VOT distribution for each word 

j as Gaussian (normal) with mean equal to a linear combination of the parameters and a standard 

deviation that may also be specific to the speaker, as shown in equation (2). Here ‘VOT(i,j)’ denotes a 

random variable over VOTs (in ms) for word j as produced by speaker i, ‘~’ means ‘distributed as’, 

‘N(x;y)’ is the normal distribution with mean x and variance y, and ‘Isg(j)’ is an indicator function that 

takes on value 1 if word j begins with a [+spread glottis] stop, 0 otherwise. Similarly, ‘Idor(j)’ is an 

indicator function that takes on the value 1 if word j begins with [k
h
], 0 otherwise. 

  

(2) Listener model of speaker-specific VOT distribution 

 VOT(i,j)  ~  N(Isg(j)·sg(i) + Idor(j)·dor(i) + w(i,j); (i)
2
) 

 

The assumption that VOT distributions are normally distributed was made primarily for computational 

convenience. At least population VOT distributions appear to be positively skewed (Allen and Miller 

2001) and if desired this could be enforced by replacing the normal distribution with a lognormal, 

gamma, or other nonsymmetric continuous distribution (see, for example, Casella and Berger 2002). 

 The speaker-specific model (2) immediately raises a learning problem. What should the listener’s 

internal model of speaker s(i) predict as probable VOT values for an initial stop in a word that the 

listener has never heard produced by s(i) (say, a nonword that occurs only in the context of an 

experiment)? This general problem becomes even sharper in the particular context of the experiment 

reported in section 2. The participants in that experiment heard only a subset of the [p
h
]-initial words, 

and none of the [k
h
]-initial words, that they were asked to produce. Yet to a good first approximation 

they showed the same level of ‘imitation’ for all words. How did the participants estimate the dor* 

parameter of the digitally manipulated speaker s*, who they had never heard say [k
h
] in initial 

position? How did they estimate the w(j)* parameters for words that had not been presented during the 

listening phase of the experiment? 

 The general answer that we propose for questions such as these is that listeners have a population 

grammar of VOT distribution in addition to speaker-specific grammars, and that they are able to use 

the population grammar to make inferences about individual speakers in the absence of positive 

evidence. The population grammar has the same types of parameters as the grammars for individual 

speakers, but they are interpreted quite differently. If we think of the parameters of a speaker-specific 

grammar as a random vector (i.e., vector of random variables) g(i) = <sg(i), dor(i), w(i,1), w(i,2), …>, 

then the vector of population parameters G = <sg, dor, w(1), w(2), …, w(120)> gives the mean or 

expected value of g(i). Just as the VOT of a word uttered by speaker i is modeled as a random draw 

from the distribution of g(i), the grammar g(i) is modeled as a random draw from the population 

grammar. We assume that the distribution is multivariate normal with mean G and covariance . 

 

(3) Listener model of population VOT distribution 

 g(i)  ~  N(G; ), where g(i) = <sg(i), dor(i), w(i,1), w(i,2), …> and G = <sg, dor, w(1), w(2), …> 

 

The listener is now not at a total loss in estimating speaker-specific parameters for which direct 

evidence is lacking. He or she can use what is known about speakers in general, as represented in the 

population grammar, to ‘fill in’ plausible values. At first sight, this solution to the learning problem 

may seem circular or paradoxical: after all, how does the listener estimate the population grammar G 

except through experience with the productions of individual speakers? There is a certain unavoidable 

circularity here, but it does not lead to paradox or intractability, as we show in the next subsection. 
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3.2. Hierarchical Bayesian learning of phonetic parameters 
 

 Equations (2) and (3) constitute two levels of a hierarchical model of VOT: VOT tokens are 

generated from speaker-specific distributions; the parameters of speaker-specific distributions are 

generated from the population distribution. We assume that there is another distribution, the 

superopulation distribution UG, from which the population parameters are generated. As its name 

suggests, this hierarchically highest distribution encodes universal (language-independent) aspects of 

VOT patterning. For example, if there is statistical structure in the mean VOT values of aspirated stops 

across languages, as suggested by the survey of Cho and Ladefoged (1999), this could be encoded in 

the superpopulation distribution from which population sg values are drawn. Similarly, cross-linguistic 

generalizations about the extent to which dorsal place of articulation increases VOT (see again Cho 

and Ladefoged 1999) could be encoded in the superpopulation distribution of population dor values. 

We also expect the correct superpopulation distribution over word-specific population parameters to 

have a smaller mean and variance than those for phonetic parameters such as sg and dor, since word-

level VOT differences within a language seem substantially smaller than VOT differences across 

languages. Because our interest here was in modeling VOT distributions in a particular language and 

experiment, not in understanding the constrained variation of VOT distributions across languages, the 

simulations reported here employ a provisional UG: each population parameter was assumed to be 

drawn independently from a normal distribution with fixed mean of 0 and variance of 1.  

 Estimating the parameters of equation (2) for each speaker s(i) and the parameters of equation (3) 

for the entire population of speakers, given a sample of VOTs for each speaker and the fixed 

superpopulation, is a standard application of hierarchical Bayesian inference (Gelman et al. 2004, 

Gelman 2007). Because the learning problem is ‘circular’ — the speaker-specific and population 

parameters are interdependent and must be estimated jointly — there is no closed-form expression for 

the parameter values. However, an iterative procedure can be employed to identify values of all of the 

parameters that make the VOT productions most likely given the fixed UG. Informally (consult the 

references just cited for details), the procedure is as follows. In a first step, we fix the values of the 

population parameters G (which are initially set according to some guessing procedure) and perform 

Bayesian inference of each batch of speaker-specific parameters g(i) using G as a prior distribution and 

the productions from speaker i as data. The g(i)’s can be estimated independently and in parallel. The 

second step is to now treat the estimated speaker-specific parameters as data and perform the same 

type of Bayesian inference of the population parameters given the superpopulation prior UG. Each of 

the steps has a closed-form solution that is easy to compute. The two steps are alternated until a 

convergence criterion indicates that the population values have settled near their optimal values: those 

that maximize the probability of the data while minimizing departures from the fixed superpopulation 

prior.
5
 

 In order to concretely instantiate the model and simulate learning, the 120 baseline VOT values 

for each of the 27 participants in the experiment of section 2 were taken as data. After a short learning 

period, the model arrived at parameter values that accurately encoded the VOT distribution of each 

speaker (all correlations between baseline productions and speaker-specific model predictions had r
2
  

.98) and for the population as a whole. For example, the mean baseline VOT for [p
h
] across all 

participants and words was 65.73ms with a large standard deviation (15.25). The model’s estimate of 

the population value of the sg parameter matched this closely at 62.87. Similarly, across all 

participants the difference between the mean baseline VOT for [k
h
] and that for [p

h
] was +10.25ms. 

The model’s estimate of the population value of the dor parameter approximates this as well at 7.79. 

(The fact that both parameters are lower than one might expect given the mean data reflects a general 

property of Bayesian learning with priors that favor 0 values, as our provisional UG does.) 

 Clearly, exposure to 27 120 baseline VOTs vastly underestimates the phonetic experience that the 

participants had prior to the experience. However, we believe that the learning data is large and 

                                                
5
 Iterative estimation can be performed simultaneously for the means and (co)variances of the distributions in the 

model, at some computational cost. The simulations reported here reflect estimation of the parameters that 

determine the means only; all of the variance parameters of the population and speaker-specific distributions were 

fixed at a large value (10
2
). Learning (co)variances is a focus of our on-going development of the model. 
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realistic enough to reveal general properties of the hierarchical model. The excellent correlation 

between each participant’s baseline productions and the learned model’s predictions for that speaker 

shows an ability to perform perceptual adaptation. Scaling up to many additional speakers (and hence 

inclusion of many additional batches of speaker-specific phonetic parameters) should not be 

problematic, since the parameters for all speakers are learned independently and in parallel. The most 

relevant test of the model, which we turn to next, is whether its knowledge of the speech population 

supports empirically valid inferences given impoverished data from a new speaker. 

 

3.3. Predictions about imitation 
 

 After the model had learned from the baseline productions, we added a new set of speaker-specific 

parameters (initially set to random values) that were then learned from the same VOT-lengthened 

stimuli heard by the participants in the listening phase of our experiment. The digitally manipulated 

speaker is referred to as s* and the estimated parameters for that speaker as g* = <sg*, dor*, w(1)*, …, 

w(120)*>. The population parameters were held fixed during this phase of learning, reflecting the 

assumption that the participants’ internal models of the population evolve too slowly to be 

substantially changed within the time of a short experiment. (The assumption that brief experiments 

can affect speaker-specific parameters, perhaps independently of population parameters, is supported 

by perceptual adaptation to multiple speakers; see Kraljic and Samuel 2007.)  

 With respect to the 80 heard words, for which positive evidence was provided about s*, the model 

showed perceptual adaptation to the new speaker (the correlation between the VOTs of s* and the 

model’s prediction had r
2
 = .95 after 20 learning steps). However, this finding alone does not 

demonstrate an ability to generalize from those words, all of which began with [p
h
], to other [p

h
]-initial 

words and to [k
h
]-initial words. Notice in particular that the model had no direct evidence concerning 

the proper value of the dor and several word-specific parameters for s*. 

 In order to compare the generalization performance of the model with the imitation results of 

experiment, we generated predicted test VOT values for each participant s(i) by blending together the 

speaker-specific models g(i) and g* with a single mixture parameter (i) (0  (i)  1) as in (4). 

 

(4) Mixture equation for phonetic imitation 

 VOT(i,j) at test  ~  (i)  N(Isg(j)·sg(i) + Idor(j)·dor(i) + w(i,j); (i)
2
) 

    + [1- (i)]  N(Isg(j)·sg* + Idor(j)·dor* + w(i)*; ( *)
2
) 

 

The mixture parameter (i), which embodies participant s(i)’s propensity to imitate the experimental 

stimuli, was fit to the test productions of that participant. Thus there were 27 free parameters, far fewer 

than the 27 120 test data points. The figure below shows the observed and predicted levels of 

imitation, with baseline values included for reference, averaged across all participants and binned into 

four categories: high-frequency heard [p
h
]-initial words (‘p+hi’), low-frequency heard [p

h
]-initial 

words (‘p+lo’); low-frequency unheard [p
h
]-initial words (‘p_lo’); and low-frequency unheard [k

h
]-

initial words (‘k_lo’). Appropriate levels of generalization to the unheard words and segment are 

evident. (Similar results, not shown here for reasons of space, hold for the individual participants.) 
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4. Conclusion 
 

 In this paper, we have proposed a hierarchically organized model of phonetic adaptation and 

imitation that employs multi-level linguistic representations and standard principles and techniques of 

Bayesian learning. This model has a general ability to adapt to experience within the limits of its 

representational space. When combined with a simple mixture conception of imitative production 

(equation (4)), the model is able to use what it has learned about individual speakers and the broader 

speech population to generate empirically valid levels of imitation. In particular, it solves the problem 

of learning about the phonetic distribution of a new speaker from limited evidence, and thereby 

correctly generalizes phonetic imitation to unheard words and sounds. 

 This model, which we have found to be more empirically successful than alternatives that lack 

either its multi-level representations or its hierarchical Bayesian organization, can be developed and 

extended in several directions. We have already indicated the open-endedness of the formalism: 

additional phonetic, phonological, lexical, and sociolinguistic variables could be incorporated into the 

model without changing its modes of computation and learning. The development we find most 

pressing, and which has not been addressed in the simulations reported here, is that of estimating the 

covariances among phonetic properties within a given speaker and across the population. 
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