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Here I present a novel mathematical formalization of speech perception. The speech module of
the auditory system is formalized as a Hilbert space. Phonetic categories are modeled as vec-
tor subspaces, and the phonetic identity of speech signals is determined by assessing how much
the speech signals project onto these categorical subspaces. A computer simulation trained with
TIMIT data demonstrates that this model captures two key properties of categorical perception:
nonlinearity in identification functions, and a sharp peak in discrimination between categories.

The vector space that will be considered here is the space of all discretized complex-valued
functions, which represent the Fourier transform of sound waves. This space is complete, and can
be equipped with the inner product hx, yi :

PN
i=1 xiyi, making this a Hilbert Space [1]. Inner

products automatically induce a norm, which is a unary operation that maps vectors to real-valued
scalars: kxk =

p
hx, xi, which in this case corresponds to the root-mean-squared amplitude of

acoustic signals. A norm induces a distance metric, which is a binary operation that maps pairs of
vectors to a real-valued scalar, defined as: d(x, y) = kx� yk. Here this corresponds to the amount
of acoustical power in the spectral di↵erence between two signals.

Figure 1: Schematic representa-
tion of the model. The input signal
x has the nonspeech noise removed
to yield, ✏?. Then the components
shared between all categories are
removed to yield ⌧

?. This vector
is then projected onto all the pho-
netic subspaces, yielding s1, s2....

The core proposal is that phonetic categories are subspaces of
this much larger Hilbert space of acoustic signals. Every vector
subspace S can be associated with a projection operator Ps

1. For
any vector x 2 V , Psx = y where x = y + z and y 2 S and x 2
S

?, where S

? is the orthogonal complement of S. In other words,
projection operators decompose arbitrary vectors into two parts,
y and z, where y is a vector which is a member of the associated
subspace S, and z is not a member of that subspace. For example,
if S represents the subspace of all [s] signals, then Ps is the operator
which allows one to decompose any acoustic signal into two parts –
the [s]-component (potentially 0), and the rest. If the signal really
is an [s], then the vector returned by Ps will be relatively ‘large’
compared to the the vector returned by the projection operator
associated with a di↵erent phonetic category.

This model works by decomposing an input signal, x using pro-
jection operators in the following way: U is the union of all the
categorical subspaces, and E is its orthogonal complement – i.e.,
the subspace of all vectors which are not speech sounds. P✏ is the
projection onto this subspace. That is, U =

SN
i=1 Si and E = U

?.
Applying this operator to an input signal, x, gives us ✏, the portion of the signal which is non-
speech noise. To remove it, it is subtracted from x to get ✏?. T is the intersection of all categorical
subspaces, and P⌧ is the projection onto this subspace, T =

TN
i=1 Si. Applying this operator to the

denoised vector, ✏? gives us ⌧ , the projection onto the subspace common to all speech sounds. Since
this is uninformative for the purposes of phoneme identification, it is discarded: ⌧

? = ✏

? � P⌧ ✏
?.

We now have a vector, ⌧? which has non-speech noise removed, and the projection onto the com-
mon subspace, ⌧ , removed. This vector is then projected onto each categorical subspace Si using
the corresponding projection operator: si = Ps

i

⌧

?. This cascade of decompositions is depicted in
figure 1.

1For instance, in R2, the x-axis is a subspace, and there is a particular operator, P
x

which projects arbitrary
vectors onto the x-axis
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Figure 2: Simulation results.
A linear continuum between [

R
]

and [s] , and the ID-function de-
rived from the projection weights,
and the discrimination function de-
rived from the distance metric be-
tween adjacent, reconstituted sig-
nals (solid line), and distance met-
ric between input signals (dashed
line).

Category membership is estimated by deriving weights from
projections. If a vector comes from a particular category, the
magnitude of its projection onto that subspace will be relatively
larger than if it does not. Weights are computed for each category:

wi =

⌧
s
i

ks
i

k ,
⌧?

k⌧?k

�g

, where g is a free parameter. This is the inner

product of the input signal, ⌧? and its projection onto the subspace
Si, both normalized, and raised to some power g � 1. If ⌧? 2 Si,
this will be equal to 1. If ⌧? 2 S

?, this will be equal to zero. To
compute the probability that the input signal belongs to a particu-
lar category, the weights are normalized: pi =

w
iP

N

i=1 wi

. The signal

is then reconstituted from its constituent projections si, reweighted
by pi: x̂ =

P
pisi.

A simulation was created using the voiceless coronal fricatives
[
R
] and [s] from the TIMIT database. Projection operators were es-

timated by using Principal Components Analysis to derive a basis
for each phonetic category, from which projection operators can be
derived. An [

R
] and an [s] were chosen randomly, and a linear, 21-

point continuum was created by cross-fading the two signals. Fig-
ure 2 displays the identification function (derived from the weights
estimated from the projection operators), and the discrimination
function, operationalized here as the distance metric between adja-
cent pairs of reconstituted signals, d(x̂i, x̂i+1). It can be seen that
the identification curve follows the familiar, sigmoid-shape, first ob-
served in [4], and widely reported since. Second, the discrimination
curve has a sharp peak in between the categories. This model ex-
hibits the perceptual magnet e↵ect without any notion of ‘category
center’ or ‘prototype [3], or any computations of probability distributions [2], or selection or ranking
of acoustical ‘cues’ [5]. Perceptual warping arises out of the latent structure of phonetic categories,
here modeled as vector subspaces which contain the complex spectra of speech sounds. Once the
inner-product is defined, notions of length (i.e., loudness), and distance naturally arise as simple
mathematical consequences. This action of the projection operators is also mathematically identical
to the formal description of the action of neurons in auditory cortex with complex spectral-receptive
fields – consequently, the model has a direct neural interpretation.

References

[1] L. Debnath and P. Mikusiński. Introduction to Hilbert Spaces with Applications. Academic Press, Inc, Boston,
1990.

[2] N. Feldman, J. Morgan, and T. Gri�ths. The influence of categories on perception: Explaining the perceptual
magnet e↵ect as optimal statistical inference. Psychological Review, 116(4):752–782, 2009.

[3] P. Iverson and P. Kuhl. Mapping the perceptual magnet e↵ect for speech using signal detection. Journal of the
Acoustical Society of America, 97(1):553–562, 1995.

[4] A. Liberman, K. Harris, H. Ho↵man, and B. Gri�th. The discrimination of speech sounds within and across
phoneme boundaries. Journal of Experimental Psychology, 54:358–368, 1957.

[5] J. Toscano and B. McMurray. Cue integration with categories: weighting acoustic cues in speech using unsuper-
vised learning and distributional statistics. Cognitive Science, 34(3):434–464, 2010.

2


