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1. What is the objective of early learning of constraint-based phonology, and
what prior assumptions are needed to (approximately) achieve that objective?

− restrictiveness and a rich prior (Tesar & Smolensky 1998, 2000; Prince & Tesar 2004, Hayes 2004, . . . )

+ posterior sampling and an unbiased/uninformative prior

2. Gibbs algorithm for early phonological learning: a general Bayesian inference
method applied to noisy Harmonic Grammar (e.g., Boersma & Pater 2008; Jesney & Tessier 2009)

• observe positive data (surface forms) y
• iteratively sample grammar w̄, weights W, and inputs x

→ guaranteed to eventually converge to the joint posterior distribution

3. Sample simulations and discussion of extensions

• Pseudo-Korean, AZBA, and friends
• hidden structure, paradigm learning, noisy OT, child production grammar
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Infants 8-10m distinguish structures that are phonotactically legal (or common)
in their native language from structures that are phonotactically illegal (or rare)
(e.g., Jusczyk et al. 1993ab, 1994; Friederici & Wessels 1993; Kajikawa et al. 2006; reviewed in Jusczyk 1997, Hayes 2004)

Ex. English syllable-/word-initial [sk], [st] vs. ??[vl], *[kn], *[zw]

Following Hayes (2004) and others, interpret this as evidence for acquisition of a
constraint-based phonological perception or ‘receptive’ grammar

• from observation of legal examples (positive evidence)
• before development of the ability to reproduce these examples
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in their native language from structures that are phonotactically illegal (or rare)
(e.g., Jusczyk et al. 1993ab, 1994; Friederici & Wessels 1993; Kajikawa et al. 2006; reviewed in Jusczyk 1997, Hayes 2004)

Ex. English syllable-/word-initial [sk], [st] vs. ??[vl], *[kn], *[zw]

Following Hayes (2004) and others, interpret this as evidence for acquisition of a
constraint-based phonological perception or ‘receptive’ grammar

• from observation of legal examples (positive evidence)
• before development of the ability to reproduce these examples

What is the objective of early constraint-based phonological learning, and
what prior assumptions are needed to (approx.) achieve that objective?
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Tesar & Smolensky (1998, 2000), Hayes (2004), Prince & Tesar (2004) and much
subsequent work take the objective of learning to be grammar restrictiveness
(see also earlier work on the subset problem, e.g., Baker 1979; Angluin 1980; Pinker 1986, and the associated subset principle, e.g.,

Berwick 1982, 1986; Jacubowitz 1984, Wexler & Manzini 1987)

For the learning of phonotactic distributions . . . the goal is always to
select the most restrictive grammar consistent with the data. The
computational challenge is efficiently to determine, for any given set of
data, which grammar is the most restrictive. (Prince & Tesar 2004:249)

If the [learned] rankings are correct, the grammar will act as a filter:
it will alter any illegal form to something similar which is legal, but it
will allow legal forms to persist unaltered. (Hayes 2004:168)
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• Laryngeal distributional pattern of stops

- Voiceless aspirated vs. unaspirated contrast word-initially
[tha], [ta] (*[da])

- Voiceless aspirated vs. voiced contrast intervocalically
[atha], [ada], [thatha], [thada], [tatha], [tada] (*[ata], *[thata], etc.)

- Only voiceless unaspirated word-finally
[at], [that], [tat] (*[ath], *[ad], *[thad], etc.)

• Constraints

M: *[+voice][-voice][+voice], *[+s.g.,+voice], *[-son,+voice], *[+s.g.],
and ‘crazy’ *[-s.g.] (Hayes 2004:185)

F: Ident[s.g.], Ident[s.g.]/ V, Ident[voice], Ident[voice]/ V



Difficulty of achieving restrictiveness
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In principle:

Multiple grammars can be consistent with the same data, grammars
which are empirically distinct in that they make different predictions
about other forms not represented in the data. If learning is based
upon only positive evidence, then the simple consistency of a
grammatical hypothesis with all the observed data will not guarantee
that this hypothesis is correct . . . . (Prince & Tesar 2004:245)

In practice:

• Hayes (2004) ran the Recursive Constraint Demotion algorithm of Tesar
(1995), Tesar & Smolensky (1998, 2000) on Pseduo-Korean and other cases

• The resulting grammars were quite unrestrictive: all IO-Faithfulness
constraints in the top stratum, failing to ‘filter’ many types of illegal form
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Several a priori assumptions have been attributed to the language learner in work
that takes restrictiveness as the objective

• Input assumption
The input for phonological learning is identical to the adult surface form (or
the ‘observable’ part of the adult surface form).
early phonotactic learning: e.g., Tesar & Smolensky 1998, 2000; Hayes 2004, citing Daniel Albro; Prince & Tesar 2004

production learning: e.g., Smith 1973; Demuth 1995, 1996; Pater & Paradis 1996; Tessier 2007, 2009

• Low IO-Faithfulness assumption
The learner prefers grammars in which Markedness constraints are
ranked/weighted more highly than input-output Faithfulness constraints.
early phonotactic learning: e.g., Smolensky 1996; Tesar & Smolenksy 1998, 2000; Hayes 2004; Prince & Tesar 2004

production learning: e.g., Demuth 1995; Pater & Paradis 1996; Itô & Mester 1999; Gnanadesikan 2004; Levelt & van de Vijver 2004

• High OO-Faithfulness assumption (McCarthy 1998; see also Jesney & Tessier 2009)
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The Low IO-Faithfulness assumption has been enforced by an increasingly
complex set of language-specific learning mechanisms

• Markedness ≫ IO-Faithfulness in the initial state
(Smolensky 1996; Tesar & Smolensky 1998, 2000; originally based on a suggestion of Alan Prince)

• Biased Constraint Demotion (BCD) (Prince & Tesar 2004:269-270)

ordered priorities: Faithfulness Delay, Avoid the Inactive; prefer Smallest
Effective F Set; prefer Richest Markedness Cascade

• Low Faithfulness Constraint Demotion (Hayes 2004:177-182)

ordered priorities: Favour Markedness; Favour Activeness; Favour Specificity;
Favour Autonomy

• Elaborations of Favour Specificity that involve extra-grammatical tracking of
phonological context co-occurrence (Hayes 2004:193 and fn.31; Tessier 2007:78)

(see also Smith 2000 and especially Prince &Tesar 2004 on special/general relations both basic and derived)



Review of learning with the restrictiveness objective
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• BCD, Low Faithfulness Constraint Demotion, and related algorithms are not
guaranteed to maximize restrictiveness or its r-measure approximation
(for discussion of the difficulties see Hayes 2004:186 and fn. 25; Prince & Tesar 2004:247,252)

- see Hayes’s website for a comparison of algorithms on Pseudo-Korean and
other cases (www.linguistics.ucla.edu/people/hayes/acquisition/)

- see Magri (2010) on the prospect of ever proving such a result for OT

• Existing algorithms are brittle, highly sensitive to the contents of the
constraint set (see Hayes 2004:185, Prince & Tesar 2004:274-278)

• The r-measure approximation (=
∑

F

∑

M I[M ≫ F ]) does not accord with
restrictiveness in all cases (Prince & Tesar 2004:252, 276)

• Special/general relations among Faithfulness constraints cannot be calculated
independently of the phonological system being learned
(Prince & Tesar 2004:271-278, Appendix 3; Tessier 2007, chapter 2)
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• Switch from OT to HG can perhaps simplify the set of a priori learning
assumptions (e.g., Jesney & Tessier 2009), but still no general guarantees
about the restrictiveness of the learned grammars

• Jarosz (2006, 2007) proposes to change the learner’s objective — this talk
builds on Jarosz’s work within a more general Bayesian framework, and with a
very different type of inference algorithm
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• Embrace the learner’s ignorance
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• Embrace the learner’s ignorance

- If the learner assumes that the input is identical to the output
then high-ranking/weighted Faithfulness can explain all of the data,
requiring additional assumptions and mechanisms to suppress Faithfulness.

- What if the Input assumption and the Low IO-Faithfulness assumption
were both eliminated? (NB. not claiming that the learner fails to know the adult surface form)

- What if no learning-specific assumptions were made and every unobserved
variable had to be inferred from the positive data?

- Need a learning framework in which multiple interdependent hidden
variables can be jointly inferred from the available evidence . . .



Bayesian inference for constraint-based

phonology with Gibbs sampling
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Bayesian grammatical inference
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p(grammar|data)
︸ ︷︷ ︸

posterior

∝ p(data|grammar)
︸ ︷︷ ︸

likelihood

× p(grammar)
︸ ︷︷ ︸

prior

• Likelihood term favors grammars that assign higher probability to the positive
data (observed surface forms) — this is related to consistency vs. restrictiveness

• Prior term favors grammars that accord with a priori assumptions

− could include Low Faithfulness, Favour Specificity, r-measure value, etc.
+ instead assume that the prior is maximally unbiased (uninformative)

• Goal of inference is not to find a single grammar with maximal posterior
probability, but to sample grammars according to their posterior values



Specialization to noisy Harmonic Grammar
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• HG defines harmony as the weighted sum of constraint violations, and
optimality as most harmonic among the competitors
(Legendre, Miyata & Smolensky 1990ab, Smolensky & Legendre 2006, Keller 2006, Pater 2009, Potts et al. 2010)

*[+voice][-voice][+voice] *[-son,+voice] Ident[voice] H

/thata/ 12 10 1

[thata] -1 0 0 -12

☞ [thada] 0 -1 -1 -11

• Given a constraint set, a particular HG grammar is defined by a weight vector
w̄ = (w̄1, . . . , w̄m) with one component per constraint (each w̄k ≥ 0)



Specialization to noisy Harmonic Grammar
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• A noisy HG system is defined by a weight vector w̄ and a (Gaussian) noise
distribution N (0, σ2I). Each evaluation involves drawing a weight vector

w ∼ w̄ +N (0, σ2I)

and calculating harmony and optimality with the sampled weights
(Boersma & Pater 2008, Jesney & Tessier 2009, with precedent in Boersma 1998, Boersma & Hayes 2001; cf. Goldrick & Daland

2009, who add noise to constraint violations instead of weights)

*[+voice][-voice][+voice] *[-son,+voice] Ident[voice] H
/thata/ 12 + 0.476 10 - 1.25 1 - 0.329

[thata] -1 0 0 -12.476

☞ [thada] 0 -1 -1 -9.421

*[+voice][-voice][+voice] *[-son,+voice] Ident[voice] H

/thata/ 12 - 0.711 10 + 1.096 1 + 1.154

☞ [thata] -1 0 0 -11.289

[thada] 0 -1 -1 -13.25



Specialization to noisy Harmonic Grammar
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Independence and domain of weight sampling

• The sampling distribution

w ∼ w̄ +N (0, σ2I)

is equivalent to sampling each weight wk ∼ w̄k +N (0, σ2) independently of
the other weights, giving the probability of the vector w a simple form:

p(w|w̄, σ2) =
m∏

k=1

N (wk; w̄k, σ
2)

• Technically weight sampling is from truncated Gaussians restricted to [0,∞)
— no negative weights are allowed — but this does not affect the inference.



Notation
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grammar w̄

weights W = {w1,w2, . . . ,wn}

inputs x = {x1, x2, . . . , xn}

outputs y = {y1, y2, . . . , yn} (the observed, positive data)

harmony hw(x, y)

optimality HG(w, x) = { y | ∀y′ ∈ Gen(x) : hw(x, y) ≥ hw(x, y
′) }

Proposed learner maintains the invariant that yi ∈ HG(wi, xi) (for all
i = 1, . . . , n), where typically {yi} = HG(wi, xi) [i.e., harmony ties are rare]



Graphical model of the data
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(variance parameter σ2 is assumed to be fixed here, but could also be inferred)
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Joint posterior distribution of the grammar, weight samples, and inputs given the
observed data:

p(w̄,W,x|y)
︸ ︷︷ ︸

posterior

∝ p(y|w̄,W,x)
︸ ︷︷ ︸

likelihood

× p(w̄,W,x)
︸ ︷︷ ︸

prior
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posterior
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⋆ Learning objective: draw samples from this posterior distribution, and in
particular find grammars (w̄) that have high posterior probability given the data
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The joint posterior distribution factorizes as follows (recall graphical model):

p(w̄,W,x|y) ∝ p(y|w̄,W,x)× 1

∝ p(y|W,x)× p(W|w̄)× 1
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∝ p(y|W,x)× p(W|w̄)× 1

where

• p(y|W,x) = 1 iff, for all i = 1, . . . , n, the observed output yi is optimal given
input xi and weight sample wi: that is, yi ∈ HG(wi, xi)

- otherwise the observed data is not generated and p(y|W,x) = 0
- learner proposed below maintains the invariant that p(y|W,x) = 1

• p(W|w̄) =
∏n

i=1N (wi|w̄, σ2I) =
∏m

k=1

[∏n
i=1N (wik|w̄k, σ

2)
]
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The factorized form of the joint posterior

p(w̄,W,x|y) ∝ p(y|W,x)× p(W|w̄)× 1

suggests an iterative inference (sampling) strategy, looping the following steps:
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The factorized form of the joint posterior

p(w̄,W,x|y) ∝ p(y|W,x)× p(W|w̄)× 1

suggests an iterative inference (sampling) strategy, looping the following steps:

1. Sample grammar w̄ holding fixed W and x

If the weight samples were W, what would be a likely grammar w̄?

2. Sample weights W holding fixed w̄ and x

If the grammar were w̄ and the inputs were x, what are likely weight samples
W could map the inputs to the observed outputs?

3. Sample inputs x holding fixed w̄ and W

If the weight samples were W, what possible inputs x could be mapped to
the observed outputs y?
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• We have eliminated the Input assumption and Low IO-Faithfulness
assumption of previous work on early phonological learning. In fact, we are
entertaining a completely unbiased prior: p(input) ∝ 1, p(grammar) ∝ 1
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Up to this point:

• We have eliminated the Input assumption and Low IO-Faithfulness
assumption of previous work on early phonological learning. In fact, we are
entertaining a completely unbiased prior: p(input) ∝ 1, p(grammar) ∝ 1

• This makes the phonological learning problem harder: now must infer inputs
and weight samples in addition to the grammar

• The joint posterior distribution over 〈grammar, weight samples, inputs〉 can
be written down and factored, but not obvious how to do anything with it

• Suggested an iterative strategy of inferring (sampling) each hidden variable
while holding the others constant — is this legitimate? how to execute it?



Gibbs sampling
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• Gibbs sampling is a general Markov Chain Monte Carlo (MCMC) technique
for generating samples from complicated joint distributions
(Geman & Geman 1993; MacKay 2003; Bishop 2006)

• Given hidden variables θ1, θ2, . . . , θn and observed variables, the technique
involves a loop in which each θi is sampled holding all others constant

- Requirement: must know and be able to sample from the conditional
distribution p(θi|θ1, . . . , θi−1, θi+1, . . . , θn) for each hidden variable θi

- Derivation of conditional distributions involves factorization of the joint
and liberal application of Bayes’ Theorem, even when the prior is uniform

• Given sufficient time, the Gibbs sampler is guaranteed to draw samples from
the joint distribution: the objective of posterior sampling is achievable



Gibbs sampling algorithm for noisy HG
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Notation: α(t) is the value of variable α at discrete ‘time’ or step t, where
initialization of all variables occurs at time t = 0

Initialization

• For each observed surface form yi, select an initial input x
(0)
i and a weight

sample w
(0)
i such that w

(0)
i maps xi to yi: that is, yi ∈ HG(w

(0)
i , x

(0)
i )

- can initially set x
(0)
i := yi (recall the Input assumption)

- given (x
(0)
i , yi), can find w

(0)
i using the simplex algorithm

(Dantzig 1981/1982, Chvátal 1983, Cormen et al. 2001; see Potts et al. 2010 on HG specifcially)



Gibbs sampling algorithm for noisy HG
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Repeatedly until convergence

1. Sample grammar w̄(t+1) given the currently-sampled weight vectors

W(t) = w
(t)
1 ,w

(t)
2 , . . . ,w

(t)
n and fixed noise variance σ2

2. Sample weight w
(t+1)
i for each output yi given grammar w̄(t+1) and x

(t)
i

3. Sample input x
(t+1)
i for each output yi given w

(t+1)
i

Steps (2) and (3) can be done in parallel, asynchronously with all updates
accumulating into the grammar update (1)



Graphical model of the data (repeated)
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Recall factored posterior: p(w̄,W,x|y) ∝ p(y|W,x)× p(W|w̄)
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The grammar w̄ is conditionally independent of the observed outputs and
sampled inputs given weight samples W = w0,w1, . . . ,wn ∼ N (w̄, σ2I) i.i.d.

Therefore, grammar sampling reduces to the well-known problem of inferring the
posterior of a multivariate normal mean given known variance and i.i.d. samples

p(w̄|W, σ2) ∝ N (w̄|w̃,
σ2

n
I) × 1

where w̃ = 1
n

∑n
i=1wi is the mean of the current weight samples W

(e.g., Gelman et al. 2004, Bishop 2006)

Presumably could add an across-the-board ‘weight decay’ prior (e.g., Goldwater & Johnson 2003; Hayes &

Wilson 2008) or other weight regularizer without significantly affecting the results. Recall also that

samples are actually drawn from a truncated Gaussian restricted to return positive weights.



2. Sampling a weight vector
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Each weight vector wi is conditionally independent of all other variables and the
prior given w̄, σ2, and the input-output pair (xi, yi)

Unnormalized conditional distribution of each wi is given by restricting the
domain of N (w̄, σ2I) to weight vectors w that map input xi to output yi

p(wi|w̄, σ2, xi, yi) ∝ N (wi|w̄, σ2I) if yi ∈ HG(w, xi)
0 otherwise

⋆ How can we draw samples from this restricted multivariate normal distribution?
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Embedded rejection sampler?

• Repeatedly draw w from N (w|w̄, σ2I) until the condition yi ∈ HG(w, xi) is
satisfied, then set wi := w

• This is guaranteed to ‘work’ — generate samples from the desired restricted
distribution — if we are willing to wait for a very, very long time!
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Embedded Gibbs sampler

• The condition yi ∈ HG(w, xi) can be rewritten as a system of linear
inequalities on harmony values (Keller 2006, Potts et al. 2010)

hw(xi, yi) ≥ hw(xi, y
′)

hw(xi, yi) ≥ hw(xi, y
′′)

...
(one harmony inequality per rival candidate in Gen(xi))

• The statistics literature provides Gibbs samplers for multivariate normal
distributions subject to sets of linear inequalities (e.g., Rodriguez-Yam et al. 2004)

(see example on next slide)
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Ex. Suppose that in the process of learning Pseudo-Korean the Gibbs sampler
encounters the following partially-described situation:

hypothesized input: /thata/ *[-son,+voice] Ident[voice] *[+v][-v][+v]
10 5 1

observed output: [thada] -1 -1 0

[thata] 0 0 -1

It is highly improbable for a draw from N (w̄, σ2I) to yield a weight sample that
maps /thata/ to [thada], since w̄*[-son,+voice]+ w̄Ident[voice] >> w̄*[+v][-v][+v].

Rejection sampling would be very wasteful (billions, trillions of tries required
before a single success)
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Ex. Suppose that in the process of learning Pseudo-Korean the Gibbs sampler
encounters the following partially-described situation:

hypothesized input: /thata/ *[-son,+voice] Ident[voice] *[+v][-v][+v]
10 5 1

observed output: [thada] -1 -1 0

[thata] 0 0 -1

Instead sample w from the restricted distribution
N (w̄, σ2I) subject to:
(−1)(w*[-son,+voice]) + (−1)(wIdent[voice])
︸ ︷︷ ︸

harmony of /thata/ → [thada]

≥ (−1)(w*[+v][-v][+v])
︸ ︷︷ ︸

harmony of /thata/ → [thata]

General solution: restrict N (w̄, σ2I) by as many linear inequalities as are needed
to guarantee xi → yi; pass the problem to embedded Rodriguez-Yam sampler
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Each input xi is conditionally independent of all other random variables given the
observed output yi, the weight sample wi, and the prior

Conditional distribution of xi is given by restricting the space of all inputs to
those that are mapped to yi under the weighting wi (and normalizing)

p(xi|wi, yi) ∝ prior(xi) if yi ∈ HG(wi, xi)
0 otherwise

What is the prior distribution over inputs? Assume uninformative, prior(x) ∝ 1,
stochastic counterpart of Richness of the Base (see also Jarosz 2006, 2007)

⋆ How can we draw samples from this restricted distribution over inputs?
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Embedded rejection sampler?

• Repeatedly draw x from the rich base until the condition yi ∈ HG(wi, x) is
satisfied, then set xi := x

• As before, this is guaranteed to eventually produce a sample from the desired
restricted distribution eventually but can be extremely inefficient
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Embedded Metropolis-Hastings sampler

• The Input assumption of previous work asserted that the learner’s input is
always identical to the adult surface form

• A more flexible version of this assumption states that valid inputs are likely to
lie ‘close’ to the observed output

• Provisional implementation

- Consider an observed output yi as the ‘center’ of a discrete string-edit
distribution over potential inputs q(x|yi) (see for example Cortes et al. 2004, 2008 on the class

of rational kernels, Smith & Eisner 2005 on contrastive estimation)

- Potential inputs are proposed by q(x|yi) and accepted according to the
standard Metropolis-Hastings rule (Metropolis et al. 1953; Hastings 1970; MacKay 2003)
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Embedded Metropolis-Hastings sampler

Sampling an input xi given output yi and weight sample w

• initialize x(0) (e.g., set x(0) := x
(t−1)
i )

• for r = 1, . . . , R

- draw a new proposal x(r) ∼ q(x|yi)
- if yi /∈ HG(wi, x(r)) reject the proposal
- else accept the new proposal with probability

min

{
1× q(x(r−1)|yi)

1× q(x(r)|yi)
, 1

}

(Metropolis-Hastings rule)

• set xi := xR and return
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Comments on the string-edit proposal distribution

• A simple way of parameterizing q(x|yi) is to assess a penalty of − log δ,
0 ≤ δ ≤ 1, for each change (string edit) made in transforming y into x

(To calculate the proposal probability q(x|yi), sum over all possible edits that transform y into x, using standard finite-state

techniques; see for example Mohri 2009)

• The Input assumption corresponds to the limit of infinite change penalty,
δ → 0 (⇒ − log δ → ∞)

• The present implementation makes a much weaker assumption

- δ is large enough that proposed inputs are often different from the output

- sampling is from p(x|w, y), with q(x|y) just an intermediary tool
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Alternative input samplers?

• Could penalize edits in proportion to featural or perceptual distance
(related to proposals based on the P-map, Steriade 1999, 2001, and harmonic serialism, McCarthy 2007, et seq., 2011; see also

experimental data on perceptual similarity in infants, e.g., Stager & Werker 1997; Pater et al. 2004; Swingley & Aslin 2007)

This morning we were talking about freezing water, and I said she
would learn about Science in school someday. I said “You probably
don’t know what Science means yet” and she said “Yes I do
Grammy, it means ssshhhhhhh!” (Carol Wilson, p.c., on EW 3y)

• Calculation of proposal probabilities (and normalizing constant) involve
dynamic programming — faster alternative?

Your suggestions are very welcome!
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Repeatedly for t = 1, . . . after arbitrary valid initialization

1. Sample grammar w̄(t+1) conditioned on weight samples W(t) = {w
(t)
i }Ni=0,

fixed noise σ2

- standard multivariate normal posterior with fixed variance

2. Sample each weight vector w
(t+1)
i conditioned on input sample x

(t)
i , observed

output yi, grammar w̄(t+1), and fixed noise σ2

- embedded Gibbs sampler for multivariate normal distribution constrained
by a system of linear inequalities

3. Sample each input x
(t+1)
i conditioned on observed output yi, w

(t+1)
i , and prior

- embedded Metropolis-Hastings sampler with proposals generated from a
string-edit distribution centered on the observed form yi
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grammar weights inputs

initialization w̄(0) w
(0)
1 ,w

(0)
2 , . . . ,w

(0)
n x

(0)
1 , x

(0)
2 , . . . , x

(0)
n

burn-in phase
...

...
...

samples w̄(t) w
(t)
1 ,w

(t)
2 , . . . ,w

(t)
n x

(t)
1 , x

(t)
2 , . . . , x

(t)
n

...
...

...
...

stop w̄(T ) w
(T )
1 ,w

(T )
2 , . . . ,w

(T )
n x

(T )
1 , x

(T )
2 , . . . , x

(T )
n

Achieving the learning objective: for t, T large enough, guaranteed that
w̄(t), . . . , w̄(T ) is a sample from the posterior distribution over grammars



Examples, analysis, and extensions

29 / 38



Pseudo-Korean simulation

30 / 38

• Exhaustive set of inputs constructed from {th, t, d, dh, a} with skeleta
CV, VC, CVC, CVCV

• Adult grammar
M:*[+sg., +voice] 100
F:Ident[s.g.]/ V 100
M:*[+voice][-voice][+voice] 75
M:*[+s.g.] 75
M:*[-son,+voice] 50
F:Ident[voice]/ V 1
F:Ident[voice] 1
F:Ident[s.g.] 1

• Adult language effectively deterministic with σ2 = 1
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Weight samples (normalized to sum to unity)
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Restrictiveness test: all inputs in the rich base ‘filtered’ by grammar samples
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Sampled inputs often differ from observed outputs
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• Late grammar samples generate all and only the set of legal outputs, with
massive neutralization of inputs from the stochastic rich base

/tha/, /dha/ → [tha]
/ta/, /da/ → [da]

/tath/, /tat/, /tadh/, /dat/, /dath/, /dad/, /dadh/ → [tat]
...

...

• Sampled grammars richly exploit ‘ganging up’ property of HG

Ex. /tatha/ → [tatha] (not [tada], *[tadha]) because several constraints
*[+voice,+s.g.], Id[s.g.]/ V, *[-son,+voice], Id[voice]/ V, Id[s.g.], Id[voice]
gang up to defeat highest-weighted *[+voice][-voice][+voice]
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AZBA language type (Prince & Tesar 2004, Hayes 2004)

• Laryngeal phonotactics of stops and fricatives

- Contrast between voiced and voiceless stops word-initial and word-finally
[pa, ba, ap, ab]

- No contrast between voiced and voiceless fricatives
[sa], [as] (*[za], *[az])

- Voiced fricatives occur allophonically under regressive voicing assimilation;
voicing contrast in stops is neutralized under the same conditions
[aspa], [azba], [apsa] (*[azpa], *[asba], *[absa], *[abza])

• Constraints
M: AgreeVoice, NoVcdStop, NoVcdFric
F: IdentVoiceStop, IdentVoiceStop/Onset

IdentVoiceFric, IdentVoiceFric/Onset
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Weight samples (normalized to sum to unity)
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Restrictiveness test: all inputs in the rich base ‘filtered’ by grammar samples
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Sampled inputs often differ from observed outputs
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PAKA language type (Prince & Tesar 2004, Hayes 2004, Tessier 2007)

• Only initial-syllable vowels can be stressed (but not all are, perhaps because
‘stress’ is actually pitch accent)

• Only stressed vowels contrast for length

[páka], [pá:ka], [paka] (*[paká], *[paká:], *[pa:ka], etc.)

• Constraints
M: InitialStress, NoLong
F: IdentStress, IdentLong, IdentLong/Stressed, IdentLong/Initial
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Weight samples (normalized to sum to unity)
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Restrictiveness test: all inputs in the rich base ‘filtered’ by grammar samples
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Sampled inputs often differ from observed outputs
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Why do the preceding simulations succeed in finding restrictive grammars?

The restrictive grammars maximize the prob. of the data — and hence their own
likelihood — by mapping more inputs from the rich base to the observed forms

• AZBA
w̄NoVcdFric > w̄IdentVoiceFric + w̄IdentVoiceFric/Onset /sa/ → [sa]

/za/ → [sa]

w̄IdentVoiceFric + w̄IdentVoiceFric/Onset > w̄NoVcdFric /sa/ → [sa]
/za/ → [za]*

• PAKA
w̄NoLong > w̄IdentStress/Initial /paka/ → [paka]

/pa:ka/ → [paka]

w̄IdentStress/Initial > w̄NoLong /paka/ → [paka]
/pa:ka/ → [pa:ka]*
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The posterior distribution over grammars is the joint distribution marginalized
over all possible weight samples and inputs:

p(w̄|y) ∝

∫

W

∑

x

α(w̄,W,x,y)

where

α(w̄,W,x,y) = p(y|W,X) × p(W|w̄)

which can be thought of as a positive, fractional ‘point’ that grammar w̄ receives
if the inputs in x are mapped to the observed outputs by the weights W

Grammars with larger point totals by def. have higher posterior probability
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Posterior/restrictiveness connection
More restrictive grammars have higher posterior probability because they receive
larger probability contributions from more combinations of weights and inputs
(similar ideas suggested by Paul Smolensky, p.c., pursued in Riggle 2006, Jarosz 2006, 2007)

• Only possible if Input assumption is relaxed

• If correct, renders Low IO-Faithfulness assumption and associated
learning-specific mechanisms unnecessary

(see example on next slide)
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Ex. Small fragment of Pseudo-Korean: observe only [ta] not *[da]

*[-son,+voice] Id(voice)
/ta/ 10 5

☞ [ta] 0 0

[da] -1 -1

*[-son,+voice] Id(voice)
/da/ 10 5

☞ [ta] 0 -1

[da] -1 0

Id(voice) *[-son,+voice]
/ta/ 10 5

☞ [ta] 0 0

[da] -1 -1

Id(voice) *[-son,+voice]
/da/ 10 5

[ta] 0 -1

☞ [da] -1 0

w̄*[-son,+v] > w̄Id(voice) w̄Id(voice) > w̄*[-son,+v]
(more restrictive grammar) (less restrictive grammar)

× 1 × 1

× 1 × 1

× 1 × 1

× 0 × 0
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Summary: two-part strategy for guaranteeing grammatical restrictiveness in early
phonological learning

• Learning objective: sample from the posterior distribution over grammars

- Gibbs sampler guaranteed to do this given sufficient time

- Quite possibly other sampling methods would be even more efficient

• Posterior/restrictiveness connection

- Prove that grammars with higher posterior probability are more restrictive

- Trivial given the uninformative prior if more restrictive ⇔ higher likelihood
(see Jarosz 2006, 2007 for relevant discussion and proof of a simple case)
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More hidden variables

• Learner receives partially-observed surface forms z (e.g, Tesar & Smolensky 2000; Tesar 2004;

Naradowsky et al. 2010; Pater et al. 2010)

- learning objective: sample from joint posterior p(w̄,W,x,y|z)
- addition of hidden y does not qualitatively change the inference problem

or the Gibbs sampling strategy
- harder if elements of y are derivations of unknown length (e.g., Pater & Staubs 2010)
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More hidden variables

• Learner receives partially-observed surface forms z (e.g, Tesar & Smolensky 2000; Tesar 2004;

Naradowsky et al. 2010; Pater et al. 2010)

- learning objective: sample from joint posterior p(w̄,W,x,y|z)
- addition of hidden y does not qualitatively change the inference problem

or the Gibbs sampling strategy
- harder if elements of y are derivations of unknown length (e.g., Pater & Staubs 2010)

• Learning morphological relations (e.g., Tesar & Smolensky 2000; Tesar NELS 36, Jarosz 2006, 2007; Jesney et

al. 2009; see also Dreyer & Eisner 2008, 2009; Dreyer 2011)

- (softly) tie inputs across surface realizations of a morpheme
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More hidden variables

• Learner receives partially-observed surface forms z (e.g, Tesar & Smolensky 2000; Tesar 2004;

Naradowsky et al. 2010; Pater et al. 2010)

- learning objective: sample from joint posterior p(w̄,W,x,y|z)
- addition of hidden y does not qualitatively change the inference problem

or the Gibbs sampling strategy
- harder if elements of y are derivations of unknown length (e.g., Pater & Staubs 2010)

• Learning morphological relations (e.g., Tesar & Smolensky 2000; Tesar NELS 36, Jarosz 2006, 2007; Jesney et

al. 2009; see also Dreyer & Eisner 2008, 2009; Dreyer 2011)

- (softly) tie inputs across surface realizations of a morpheme

• Learning constraints (e.g., Pater & Staubs 2010; Hayes & Wilson 2008; Pater, to appear)

- learning objective: sample from joint posterior p(Con, w̄,W,x, |z) ?!
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Different constraint-based formalisms

• Noisy OT

- learning objective and inference strategy remain largely the same
- feasibility depends on parameterization of ranking probabilities

(e.g., Boersma 1997, Boersma & Hayes 2001 vs. Jarosz 2006, 2007)

• Conditional maximum entropy

- easier inference problem: no need for weight samples W, because
grammars are inherently stochastic

In the near future: comparison of multiple constraint-based grammatical
frameworks on learning-theoretic grounds (see already Jesney 2009)
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Later stages of phonological acquisition

• Many proposals assume (at least partly) distinct grammars for perception and
production (e.g., Smith 1973; Demuth 1995, 1996; Pater & Paradis 1996; Boersma 1998; Pater 2004; Hayes 2004; Jarosz

2006, 2007; cf. Smolensky 1996)

- broadly supported by neurophysiological and neuropsychological evidence
for distinct input and output lexicons and processing in adults
(e.g., Hickok 2000, Poeppel & Hickok 2004, 2007; Guenther 1995; Guenther et al. 1998, 2006; Shallice 2000)

- production grammar maps adult-like surface representation to child form
(e.g., Smith 1973; Demuth 1995; Gnanadesikan 1995; Pater & Paradis 1996; Levelt and Van de Vijver 1998; Hayes 2004)

• Tentative proposal: train initial production grammar from perception
grammar by mapping all adult surface forms to silence (null output)

p(w̄prod) ∝ sim(w̄prod, w̄perc)× δ(null outputs|w̄prod)
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• Bayesian inference of (sampling from) the posterior distribution on noisy
Harmonic Grammars can be achieved with modern MCMC techniques

• More restrictive grammars in test cases have higher posterior probability,
despite the unbiased prior, because they receive support from more
combinations of the hidden variables (= weight samples, inputs)

- supported by replicable simulations
- difficulty of general proof hinges on def. of ‘restrictive’

• Pursuing simplification in learning theory

- avoid learning-specific assumptions
- embrace learner’s ignorance of hidden variables
- pursue consequences of inference with an unbiased prior
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